We use the following rules/ frmulas tind the derivatives:
d/dx (kx^n) = (kx^n)'= knx^(n-1)
d/dx(UV) = UV'+U'V ,
d/dx{f(u(x))} = f'(u(x))*du(x)/dx = f'(u(x))u'(x)
d/dx constant or number = d/dx k = d/dx*kx^0 = 0 and
d/dx{f(x) +or- g(x)} = f'(x) +or- g'(x).
1) d/dx f(x)= sin x cos^3x
=sinx(cos^3x)'+(sinx)' (cos3^x)
=sinx(cosx)^(3-1)*(-sinx)+cosx*cos^3 x
=-(sinx)^2 (cosx)^2+(cosx)^4
2)
d/dx Q(x)= sinx/x^2+8
=[(sinx)(x^(-2))]'+[8*x^0]'
=sinx(-2*x^(-2-1))+(cosx)*x^(-2) + 8*0
=-2x^(-3)*sinx+x^(-2)cosx
=-(2sinx)/x^3+(cosx)/x^2
3)Tind equation of f(x)= 2(-2x+6)^2 when x=5
The tangent equation is:
y = y'(x-x1) + y1, where X1 =5 given and y1 = value of y at x=5.
y' at x=5 is 2(-2x+6)^(2-1)*(-2) at x=5
=2(-2x+6)(-2) at x=5
= 8x-24 at x=5
=40-24 =16 is the value of y' at x=5.
y1 = y at x=5
=2(-2x+6)^2 at x=5
=2(-10+6)^2
=32 is the value of y1 or y at x=5.
Therefore equation of the tangent: y = 16(x-5)+32 Or y= 16x-48 is the tangent.
4. FInd the slope of the tangent line to the graph of the function at the given value.
f(x)= -2/x^4 when x=7.
The slope of the tangent is y' =( -2/x^4)' at x=7
=[-2*x^(-4)]' at x=7
=(-2)(-4)x^(-4-1) at x=7
=8(7)^(-5). Very small slope and is the tagent of an angle, 0.027272339 degree with X axis.
5. Determine the point(s), (if any), at which the graph of the function has a horizontal tangent.
y(x)= x^3+15x^2+6
Solution:
A horizontal tangent has the slope zero.
y'(x) = (x^3+15x^2+6)' = (x^3)'+(15x^2)'+(6)'
=3x^2+15*2x
= 3x(x^2+5) is equal to zero when 3x = 0 Or when x = 0
When x=0 , y=6.
Therefore the tangent y =y'(x-x1)+ y1 or the value of y at x=0 becomes:
y=0*(x-5)+ 6 Or
y = 6 is the horizontal tangent.
No comments:
Post a Comment