The value of a and b has to be determined for which if f(x)= ax+b, f(2)=1 and `f^-1(3)=4` .
f(x) = ax + b
f(2) = 1
Now the value of the inverse function `f^-1(x)` is known for x = 3.
If `f^-1(x) = y` , `f(y) = x`
This gives f(4) = 3
This gives two equations that can be solved for a and b
2*a + b = 1 and 4*a + b = 3
2a + b = 1 gives b = 1 - 2a
Substitute this in 4a + b = 3
4a + 1 - 2a = 3
2a = 2
a = 1
As b - 1 - 2a, b = -1
The required value of a and b is a = 1 and b = -1
No comments:
Post a Comment