We know the `sin^2+cos^x = 1` .
Therefore `sin^2x = 1-cos^2x` .
`Tanx = sinx/cosx.` We use these identities in the course of the solution.
RHS: `tan^2 x * sin^2x = tan^2x (1-cos^2x)` ,
`=tan^2x-(tan^2x)*cosx^2` .
`=tan^2x-(sinx/cosx)^2*cos^2x.`
`=tan^2 x - (sin^2x/cos^2x)cos^2x`
`=tan^2x - sin^2x*cos^2x/cos^2x`
`=tan^2x - sin^2 x ` which is LHS.
No comments:
Post a Comment