riticool,
Solution : Let digit at ten’s place be x
and digit at unit’s place be y
The number = 10x + y
When digits are interchanged, the new number = 10y + x
As per problem,
product of digits = 14 i.e. xy = 14 (1)
Also, 10x + y + 45 = 10y + x
or 10x – x = 10y – y – 45
or 9x = 9y – 45
or x = y-5 (2)
From (1) and (2)
xy = 14
or (y – 5)y = 14
or y2 – 5y – 14 = 0
or y2 – 7y + 2y – 14 = 0
or y(y – 7) + 2(y –7) = 0
or (y + 2) (y – 7) = 0
Either y + 2 = 0 or y – 7 = 0
⇒ y = –2 or y = 7
Rejecting y = –2, we get y = 7
When y = 7, x = 2
The required number = 10 × 2 + 7
= 27
Therefore, the required number is 27
The answer can be solved using a quadratic equation or using matrices, but I gave you a fairly straightforward answer. I hope this is what you needed.
No comments:
Post a Comment