First of all, you have to make the substitution:
sqrt (1+x^2)= t, so that, if we'll differentiate it, the result will be:
(2*x*dx/2sqrt (1+x^2) )=dt
x*dx/sqrt (1+x^2) =dt
x*dx=sqrt (1+x^2) *dt, but sqrt (1+x^2)= t
x*dx=t*dt
Now, we'll write the integral depending on the variable "t":
integral(x*ln(sqrt(1+x^2)) dx)=integral(ln t*tdt)
Now, we can use the integration by parts method:
Integral (f' * g)=f*g-Integral(f*g')
We'll choose "ln t" as being f function:
f=ln t, so that f'=1/t
g'=t dt, so that g=Integral (t) dt=t^2/2
integral(ln t*tdt) =(t^2/2)*ln t-integral[ (1/t)*t^2/2]
integral(ln t*tdt) =(t^2/2)*ln t-(1/2)*(t^2/2) + C
But sqrt (1+x^2)= t, so
integral(x*ln(sqrt(1+x^2)) dx)= ((1+x^2)/2)*ln sqrt (1+x^2)-1/4*(1+x^2) +C
No comments:
Post a Comment