We know that (i) Integral (a^x) = (a^x)/ln(a) +C1 and Integral {u(x)+v(x)}dx= Integral u(x) dx+ Integral v(x) +C2
We use the results of the diffrential calculus to resolve
Integral [[4^x+10^x)/2^x] dx.
= Integral { (2^x)(2^x)+5^x)(2^x)]/2^x}dx
=Integral{(2^x+5^x)*2^x/2^x} dx
=Integral(2^x+5^x)dx, . Now using the results ar (ii),
=Integral(2^x)dx+Integral(5^x) dx
= [2^x/(ln2) +C1] +[5^x/(ln5) + C2], C1 and C2 are constants of integration.
=2^x/(ln2)+5^x/(ln5) + C , where C = C1+C2 is the constant of integration.
No comments:
Post a Comment