y= ln(lnx^2)
To find the derivative of the y.
We use thr results : d/dx(x^n) = nx^(n-1) and
d/dx { f (g(x))} ={ f(g(x)}' = { f '(g(x))}*g'(x), the chain rule formula.
Therefore d/dx{ln(f(x)} ={ lnf(x)}' = {1/f(x)}f'(x).
Coming to our question,
y = ln(lnx^2). To find the dy/dx:
dy/dx = (ln(lnx^2))'. Using the above chain rule formula we get:
dy/dx = {1/(lnx^2)} (lnx^2)'
= {1/(lnx^2)} (1/x^2)(x^2)'
=(1/(lnx^2)(1/x^2)(2x)
=2/{xlnx^2)
=1/(xlnx)
No comments:
Post a Comment